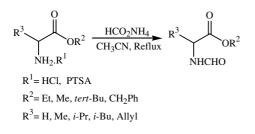


Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7589-7590

Tetrahedron Letters

Environmentally benign process for the synthesis of *N*-formyl amino acid esters


Sambasivarao Kotha,* Manoranjan Behera and Priti Khedkar

Department of Chemistry, Indian Institute of Technology—Bombay, Powai, Mumbai 400076, India Received 21 October 2003; revised 11 August 2004; accepted 20 August 2004

Abstract—Several amino acid ester hydrochlorides were reacted with ammonium formate to give *N*-formyl amino acid esters in good yields.

© 2004 Elsevier Ltd. All rights reserved.

A potentially useful protecting group, which can be introduced on the amine functionality is the formyl group.¹ N-Formyl amino acid derivatives are useful in peptide chemistry.² Moreover, dehydration of formamides can give isocyano derivatives, which are useful glycine equivalents.³ The formyl group in combination with a *tert*-butyl ester group is useful in preparing highly functionalized peptide derivatives.⁴ Generally, N-formyl amino acid esters are prepared from the corresponding amino esters using orthoformates⁵ and various other formylating agents.⁶ However, many of these methods involve reagents that are either toxic or expensive. Although orthoformates are commercially available, they are prepared from chloroform, which is not a favorable starting material from an environmental point of view. Herein, we report ammonium formate as an efficient formylating agent for the synthesis of N-formyl amino acid esters (Scheme 1).

Scheme 1.

The reaction of amino acid ester hydrochlorides with ammonium formate in dry acetonitrile at reflux gave the *N*-formyl derivatives in good yields. Generally, the formylation reaction requires 8-12h for completion. The results are summarized in Table 1.

Moreover, we found that optically pure amino acid ester hydrochlorides react to give the corresponding *N*-formyl derivatives without racemization. The specific rotation values for these samples are comparable to the literature values⁵ as given in Table 2.

It is noteworthy to mention that standard *N*-formylation by other methods is incompatible with *tert*-butyl groups,⁸ although DCC was used in combination with formic acid to formylate glycine *tert*-butyl ester hydrochloride.⁹ However, the use of ammonium formate gave *N*-formyl glycine *tert*-butyl ester in good yield. In the literature, it was reported that primary amines did not give formylation using ammonium formate.¹⁰ Surprisingly, in our hands all the amino acid esters gave the formylated products in good yields.

In conclusion, we have developed a simple and useful methodology for the preparation of *N*-formyl amino acid esters using the inexpensive, readily available, and environmentally acceptable reagent ammonium formate.

Typical experimental procedure for the N-formylation: To a stirred solution of glycine ethyl ester hydrochloride salt (5g, 35mmol) in dry acetonitrile (35mL) was added anhydrous ammonium formate (4.6g, 73mmol). The resultant heterogeneous reaction mixture was refluxed

Keywords: Ammonium formate; N-formylation; Amino acids.

^{*}Corresponding author. Tel.: +91 22 2576 7160; fax: +91 22 2572 3480; e-mail: srk@chem.iitb.ac.in

Starting material

Yield (%)

Starting material	It I offinyi derivatives	1 leia (70
O NH ₂ .HCl	OEt NHCHO	91
1 O Bu NH ₂ .HCl 2	o V NHCHO	86
L - Me - OMe - O	Me L - NHCHO 10	81
MH ₂ .HCl	O O O Me O Me	66
<i>i</i> -Pr L - OMe NH ₂ .HCl 5 O	<i>i</i> -Pr L - OMe NHCHO 12 O	84
i-Bu L - MH_2 -HCl O ⁶	<i>i</i> -Bu L - OMe NHCHO 0 ¹³	88
OCH ₂ Ph NH ₂ .PTSA 7	OCH ₂ Ph NHCHO 14	63

Table 1. The N-formylated derivatives prepared

N-Formyl derivatives

All the compounds except **11** are known and physical properties agree with literature. The spectral data for **11** is given in Ref. 7. Compound **4** is a racemic mixture.

for 12h. The solvent was evaporated and the reaction mixture was diluted with water, extracted with ethyl acetate, and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was chromatographed on a silica gel column. Elution of the column with 50% ethyl acetate/petroleum ether gave the pure *N*-formyl glycine ethyl ester (4.16g, 91% yield) as a colorless liquid.

Table 2. List of $[\alpha]_{D}^{20}$ values for the optically active *N*-formyl derivatives prepared

<i>N</i> -Formyl derivatives	Observed value $[\alpha]_{D}^{20}$	Literature value ⁵ $[\alpha]_{\rm D}^{20}$
10	-36.6 (c 0.6, EtOAc)	-34.6 (c 0.6, EtOAc)
12	-23.73 (c 1.98, EtOH)	-23.24 (c 1.98, EtOH)
13	-44.28 (c 2.1, EtOH)	-43.8 (c 2.1, EtOH)

Acknowledgements

We thank DST, New Delhi, for financial support. M.B. and P.K. thank CSIR, New Delhi, for the award of research fellowships.

References and notes

- Olah, G. A.; Ohannesian, L.; Arvanaghi, M. Chem. Rev. 1987, 87, 671; Robertson, J. Protecting Group Chemistry; Oxford Science Publication, Oxford University Press: London, 2000; p 18.
- Sheehan, J. C.; Yang, D. H. J. Am. Chem. Soc. 1958, 80, 1154; Geiger, R.; Siedel, W. Chem. Ber. 1969, 102, 2487.
- 3. Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offerman, K. Angew. Chem., Int. Ed. Engl. 1965, 4, 472.
- 4. Giard, T.; Benard, D.; Plaquevent, J. C. Synthesis 1998, 297.
- 5. Chancellor, T.; Morton, C. Synthesis 1994, 1023.
- Duczek, W.; Deutsch, J.; Vieth, S.; Niclas, H. J. Synthesis 1996, 37; Chen, F. M. F.; Benoiton, N. L. Synthesis 1979, 709; Kashima, C.; Arao, H.; Hibi, S.; Omote, Y. Tetrahedron Lett. 1989, 30, 1561; Duhamel, P.; Benard, D.; Plaquevent, J. C. Tetrahedron Lett. 1985, 26, 6065; Kisfalundy, L.; Otvos, L., Jr. Synthesis 1987, 510; Akikusa, N.; Mitsui, K.; Sakamoto, T.; Kikugawa, Y. Synthesis 1992, 1058.
- 7. Spectral data for compound **11**: ¹H NMR (400 MHz, CDCl₃): $\delta = 8.21$ (s, 1H), 6.23 (br s, 1H), 5.68–5.63 (m, 1H), 5.20–5.12 (m, 2H), 4.80 (m, 1H), 3.78 (s, 3H), 2.66–2.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.8$, 160.6, 131.9, 119.7, 52.7, 50.4, 36.5. IR (neat): $v_{max} = 3440$ (NH), 1745 (ester), 1658 (formyl) cm⁻¹. HRMS (QTOF): *m*/*z* for C₇H₁₁NO₃Na (M+Na), calcd: 180.0637. Found: 180.0640.
- Ugi, I.; Betz, W.; Fetzer, U.; Offermann, K. Chem. Ber. 1961, 94, 2814; Anderson, G. W.; Callahan, F. M. J. Am. Chem. Soc. 1960, 82, 3359; Sheehan, J. C.; Yang, D. D. H. J. Am. Chem. Soc. 1958, 80, 1154; Thomas, J. O. Tetrahedron Lett. 1967, 8, 335.
- 9. Waki, M.; Meienhofe, J. J. Org. Chem. 1977, 42, 2019.
- Reddy, P. G.; Kishore Kumar, G. D.; Baskaran, S. Tetrahedron Lett. 2000, 41, 9149.